PD- 93818 IRGP30B120KD-E Motor Control Co-Pack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features VCES = 1200V * Low VCE(on) Non Punch Through (NPT) Technology * Low Diode VF (1.76V Typical @ 25A & 25C) * 10 s Short Circuit Capability * Square RBSOA * Ultrasoft Diode Recovery Characteristics * Positive VCE(on) Temperature Coefficient * Extended Lead TO-247AD Package VCE(on) typ. = 2.28V G VGE = 15V, IC = 25A, 25C E N-channel Benefits * Benchmark Efficiency for Motor Control Applications * Rugged Transient Performance * Low EMI * Significantly Less Snubber Required * Excellent Current Sharing in Parallel Operation * Longer leads for Easier Mounting TO-247AD Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current (Fig.1) Continuous Collector Current (Fig.1) Pulsed Collector Current (Fig.3, Fig. CT.5) Clamped Inductive Load Current(Fig.4, Fig. CT.2) Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation (Fig.2) Maximum Power Dissipation (Fig.2) Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw. Max. Units 1200 60 30 120 120 30 120 20 300 120 -55 to + 150 V A V W C 300, (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m) Thermal Resistance Parameter RJC RJC RCS RJA Wt ZJC www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Transient Thermal Impedance Junction-to-Case Min. Typ. Max. --- --- --- --- --- --- --- 0.24 --- 6 (0.21) 0.42 0.83 --- 40 --- Units C/W g (oz) (Fig.24) 1 12/14/99 IRGP30B120KD-E Electrical C haracteristics @ TJ = 25C (unless otherw ise specified) P a ra m e te r V (B R )C E S C o lle cto r-to -E m itte r B re a kd o wn V o lta g e M in. 1200 V (B R )C E S / T j T em p e ra tu re C o e ff. o f B re a kd o wn V o lta g e C o lle cto r-to -E m itte r S atura tio n V C E (on ) V o lta g e V G E (th ) G a te T h resho ld V o lta g e V G E (th ) / T j T em p e ra tu re C o e ff. o f T h resh o ld V o lta g e g fe F orwa rd T ran sc o nd u c ta nc e IC E S Z ero G ate V oltag e C o lle ctor C u rre nt V FM IG E S 4 .0 1 4 .8 T yp . + 1 .2 2 .2 8 2 .4 6 3 .4 3 2 .7 4 2 .9 8 5 .0 - 1 .2 1 6 .9 325 1 .7 6 1 .8 6 1 .8 7 2 .0 1 D io d e F o rw a rd V o lta g e D ro p G a te -to -E m itte r L ea k a ge C u rre n t M ax . U nits V V /C 2 .4 8 2 .6 6 4 .0 0 V 3 .1 0 3 .3 5 6 .0 V C o nd itio ns F ig . V G E = 0 V ,I c = 2 5 0 A V G E = 0 V , I c = 1 m A ( 2 5 -1 2 5 o C ) IC = 2 5 A , V G E = 1 5 V 5, 6 IC = 3 0 A , V G E = 1 5 V 7, 9 IC = 6 0 A , V G E = 1 5 V 10 I C = 2 5 A , V G E = 1 5 V , T J = 1 2 5 C 11 I C = 3 0 A , V G E = 1 5 V , T J = 1 2 5 C V C E = V G E , IC = 2 5 0 A 9,1 0,1 1,12 o o m V / C V C E = V G E , I C = 1 m A ( 2 5 -1 2 5 C ) 1 9 .0 250 675 2000 2 .0 6 2 .1 7 2 .1 8 2 .4 0 1 0 0 S V C E = 5 0 V , IC = 2 5 A , P W = 8 0 s V G E = 0 V ,V C E = 1 2 0 0 V A V G E = 0 v , V C E = 1 2 0 0 V , T J = 1 2 5 C V G E = 0 v , V C E = 1 2 0 0 V , T J = 1 5 0 C IC = 2 5 A V IC = 3 0 A 8 I C = 2 5 A , T J = 1 2 5 C I C = 3 0 A , T J = 1 2 5 C nA V G E = 2 0 V Sw itching C haracteristics @ T J = 25C (unless otherw ise specified) P a ra m e te r T urn -O ff S witc h ing L o ss T yp . 169 19 82 1066 1493 M ax . U nits 254 29 nC 123 1250 1800 J E tot T otal S w itc h ing L o ss 2559 3050 E on T urn -o n S witc h in g Lo ss E off T urn -o ff S w itc h ing L o ss 1660 2118 1856 2580 Qg T otal G a te ch a rg e (turn -o n ) Q ge G a te - E m itte r C h arg e (tu rn -on ) Q gc G a te - C o lle c to r C h a rg e (tu rn -o n ) E on T urn -O n S witc h in g Lo ss E off M in. C o nd itio ns F ig . IC = 2 5 A 23 V CC = 6 0 0 V CT 1 V GE = 15 V IC = 2 5 A , V C C = 6 0 0 V CT 4 V G E = 1 5 V , R g = 5 , L=200H WF1 o T J = 2 5 C , E n e rg y lo sse s in clu d e ta il a n d dio d e rev e rse re co v e ry Ic = 2 5 A , V C C = 6 0 0 V J WF2 13 , 15 V G E = 1 5 V , R g = 5 , L=200H CT 4 o E tot T otal S w itc h ing L o ss 3778 4436 td (o n ) T urn - o n d e la y tim e tr R ise tim e td (o ff) T urn - o ff d e la y tim e tf F all tim e 65 35 230 75 C ies In p u t C a p a cita n c e C oes O u tp ut C a p ac ita n ce C res R e v erse T ra n sfe r C a pa c ita n ce 50 25 210 60 2200 210 85 T J = 1 2 5 C , E n e rg y lo sse s in clu d e ta il a n d dio d e rev e rse re co v e ry Ic = 2 5 A , V C C = 6 0 0 V ns 14 , 16 V G E = 1 5 V , R g = 5 , L=200H CT 4 T J = 1 2 5 oC , WF1 WF2 V GE = 0V pF V CC = 3 0 V 22 f = 1 .0 M H z o RBSOA R e v erse b ia s sa fe o p e ra tin g a re a WF1 & 2 T J = 1 5 0 C , Ic = 1 2 0 A V CC = 1 0 0 0 V , V P = 1 2 0 0 V F U LL SQ U AR E 4 CT 2 R g = 5 , V G E = + 1 5 V to 0 V o SCSO A S h ort C ircu it S a fe O p era tin g A re a E rec R e v erse re c o v e ry e n e rg y o f th e d io de trr D io d e R ev e rse re co v e ry tim e Irr P e ak R e v e rse R e c ov e ry C u rre n t Le In te rn a l E m itte r In du c ta n ce 10 ---- ---- s 1820 300 34 13 2400 J ns A nH TJ = 150 C V C C = 9 0 0 V ,V P = 1 2 0 0 V CT 3 WF4 R g = 5 , V G E = + 1 5 V to 0 V 2 38 T J = 1 2 5 oC V C C = 6 0 0 V , Ic = 2 5 A 17 ,18 ,19 20 , 21 V G E = 1 5 V , R g = 5 , L=200H CT 4, WF3 M e a sure d 5 m m from th e p a ck a g e . www.irf.com IRGP30B120KD-E Fig.1 - Maximum DC Collector Current vs. Case Temperature Fig.2 - Power Dissipation vs. Case Temperature 70 320 60 280 240 50 (W) tot 30 160 P I C (A) 200 40 120 20 80 10 40 0 0 0 40 80 120 160 0 40 80 120 160 T C (C) T C (C) Fig.3 - Forward SOA T C =25C; Tj < 150C Fig.4 - Reverse Bias SOA Tj = 150C, V GE = 15V 1000 1000 PULSED 2s 100 10 s 100 (A) 10 I 1ms I C C (A) 100s 10 1 10ms DC 0.1 1 1 www.irf.com 10 100 V CE (V) 1000 10000 1 10 100 V CE (V) 1000 10000 3 IRGP30B120KD-E Fig.6 - Typical IGBT Output Characteristics Tj=25C; tp=300s Fig.5 - Typical IGBT Output Characteristics Tj= -40C; tp=300s 60 60 V GE = 18V V GE = 15V V GE = 12V 55 45 V GE = 15V V GE = 12V V GE = 10V 40 40 V GE = 8V 35 35 50 (A) 30 C 30 C (A) 50 V GE = 10V V GE = 8V 45 25 I I V GE = 18V 55 25 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 V CE (V) 5 0 6 Fig.7 - Typical IGBT Output Characteristics Tj=125C; tp=300s 60 V GE V GE V GE V GE V GE 50 45 50 6 40 (A) 30 35 30 F 25 I I 5 45 35 25 20 20 15 15 10 10 5 5 0 0 0 4 3 4 V CE (V) - 40C 25C 125C 55 C (A) 40 = 18V = 15V = 12V = 10V = 8V 2 Fig.8 - Typical Diode Forward Characteristic tp=300s 60 55 1 1 2 3 4 V CE (V) 5 6 0 1 2 V F (V) 3 4 www.irf.com IRGP30B120KD-E Fig.10 - Typical V CE vs V GE Tj= 25C 20 20 18 18 16 16 14 14 12 12 10 V CE ( V ) V CE (V) Fig.9 - Typical V CE vs V GE Tj= -40C I CE =10A I CE =25A I CE =50A 8 10 I CE =10A I CE =25A I CE =50A 8 6 6 4 4 2 2 0 0 6 8 10 12 14 16 18 20 6 V GE (V) 12 14 V GE (V) 16 18 20 18 225 16 200 14 175 12 150 Tj=25C Tj=125C (A) 250 125 C I CE =10A I CE =25A I CE =50A I V CE ( V ) 20 8 10 Fig.12 - Typ. Transfer Characteristics V CE =20V; tp=20s Fig.11 - Typical V CE vs V GE Tj= 125C 10 8 100 6 75 4 50 2 25 0 0 Tj=125C Tj=25C 6 www.irf.com 8 10 12 14 V GE (V) 16 18 20 0 4 8 12 V GE (V) 16 20 5 IRGP30B120KD-E Fig.13 - Typical Energy Loss vs Ic Tj=125C; L=200H; V CE =600V; Rg=22 ; V GE =15V Fig.14 - Typical Switching Time vs Ic Tj=125C; L=200H; V CE =600V; Rg=22 ;V GE =15V 8000 1000 Eon 7000 tdoff Eoff 5000 t (nS) Energy (J) 6000 4000 tf tr 100 3000 tdon 2000 1000 0 10 0 10 20 30 40 50 0 60 10 30 50 60 Fig.16 - Typical Switching Time vs Rg Tj=125C; L=200H; V CE =600V; I CE =25A; V GE =15V 1000 Eon 3300 40 I C (A) I C (A) Fig.15 - Typical Energy Loss vs Rg Tj=125C; L=200H; V CE =600V; I CE =25A; V GE =15V 3500 20 tdoff 3100 2700 Eoff 2500 t (nS) Energy (uJ) 2900 tdon 100 2300 tr tf 2100 1900 1700 1500 10 0 5 10 15 20 25 30 35 40 45 50 55 Rg (ohms) 6 0 5 10 15 20 25 30 35 40 45 50 55 Rg (ohms) www.irf.com IRGP30B120KD-E Fig.18 - Typical Diode I RR vs Rg Tj=125C; I F =25A Fig.17 - Typical Diode I RR vs I F Tj=125C 45 45 40 40 35 35 Rg=5 25 30 IRR ( A ) IRR ( A ) 30 Rg=10 20 Rg=22 20 15 15 Rg=51 10 25 10 5 5 0 0 0 10 20 30 I F (A) 40 50 Fig.19 - Typical Diode I RR vs dI F /dt V CC =600V; V GE =15V I F =25A; Tj=125C 45 0 60 5 10 15 20 25 30 35 40 45 50 55 Rg (ohms) Fig.20 - Typical Diode Q RR V CC =600V; V GE =15V; Tj=125C 7000 40 6500 Rg=5 35 22 51 6000 30 10 40A 30A QRR ( n C ) (A) 5500 25 5000 RR Rg=10 25A 4500 I 20 Rg=22 15 10 3500 5 3000 0 2500 www.irf.com 500 1000 dI F / dt (A/s) 20A 4000 Rg=51 0 5 50A 1500 0 500 1000 1500 dI F / dt (A/s) 7 IRGP30B120KD-E Fig.21 - Typ. Diode E rec vs. I F Tj=125C 2400 5 2200 10 22 Energy (uJ) 2000 51 1800 1600 1400 1200 1000 800 0 10 20 30 I F (A) 40 50 60 Fig.23 - Typ. Gate Charge vs. V GE I C =25A; L=600H Fig.22 - Typical Capacitance vs V CE V GE =0V; f=1MHz 16 10000 600V 14 C ies 800V 1000 10 V GE ( V ) CapacItance (pF) 12 C oes 8 6 100 4 C res 2 0 10 0 20 40 60 V CE (V) 8 80 100 0 40 80 120 160 200 Q G , Total Gate Charge (nC) www.irf.com IRGP30B120KD-E Fig.24 - Normalized Transient Thermal Impedance, Junction-to-Case 10 1 D =0.5 0.2 0.1 0.1 0.05 P DM 0.02 t1 0.01 0.01 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + T C SINGLE PULSE 0.001 0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 10.00000 t 1 , Rectangular Pulse Duration (sec) www.irf.com 9 IRGP30B120KD-E Fig. CT.1 - Gate Charge Circuit (turn-off) Fig. CT.2 - RBSOA Circuit L L VCC DUT 80 V DUT 1000V 0 Rg 1K Fig. CT.4 - Switching Loss Circuit Fig. CT.3 - S.C. SOA Circuit d iod e cla m p / DUT D riv er D C L 900V - 5V DUT / D R IV E R DUT VCC Rg Fig. CT.5 - Resistive Load Circuit R = DUT VCC IC M VCC Rg 10 www.irf.com IRGP30B120KD-E Fig. WF.1 - Typ. Turn-off Loss Waveform @ Tj=125C using Fig. CT.4 Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125C using Fig. CT.4 800 40 900 45 700 35 800 40 600 30 700 35 TEST CURRENT 90% ICE 25 400 20 600 30 300 15 V CE ( V ) tf I CE ( A ) V CE ( V ) 500 25 90% test current 400 20 tr 300 200 15 10% test current 10 5% VCE ICE ( A ) 500 200 10 5% VCE 100 5 5% ICE 0 0 100 5 0 0 Eon Loss Eoff Loss -100 -0.5 -5 0.0 0.5 1.0 1.5 2.0 2.5 -100 -5 4.0 4.1 4.2 t I me (s) 4.3 4.4 4.5 t I me (s) Fig. WF.3 - Typ. Diode Recovery Waveform @ Tj=125C using Fig. CT.4 Fig. WF.4 - Typ. S.C. Waveform @ TC=150C using Fig. CT.3 30 1200 250 20 1000 200 -400 10 800 150 -600 0 600 100 -10 400 50 -20 200 0 -30 0 0 -200 QRR 10% Peak IRR -800 ICE ( A ) V CE ( V ) I C E( A ) V CE( V ) tRR Peak IRR -1000 -1200 -0.5 0.0 0.5 t I me (S) www.irf.com 1.0 -50 -10 0 10 20 30 t i me (s) 11 IRGP30B120KD-E TO-247AD Case Outline and Dimensions . : WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 Data and specifications subject to change without notice. 12/99 12 www.irf.com