MOTOROLA
SEMICONDUCTOR TECHNICAL DATA Order this document
by MBT3904DWlT1/D
Dual General Purpose Transistors
The MBT3904DW1TI, MBT3906DW1T1, and MBT3946DW1T1 devices are
spin–offs of our popular SOT–23/SOT–323 three–leaded devices. They are designed
for general purpose amplifier a~~lications and are housed in the SOT–363 six–leaded
MBT3904DWI T1
MBT3906DWI TI
MBT3946DWI T1
su~ace mount package. By putting two discrete devices in one package, these
devices are ideal for low–power surface mount applications where board space is at
apremium.
hFE, 100–300
LOWvcE(sat), S0,4 V
Simplifies Circuit Design
Reduces Board Space
Reduces Component Count Y’!,>$*
i~,f,,,,.,’.y$~,{,
Available in 8mm, 7–inch/3,000 Unit Tape and Reel $.:,,,.:~1.!.:,
“t,+
,.~,,~jt>, CASE 419B41 ,STVLE 1
.$,-i..,
~~,,:t..:.,>.~,~.:,...,,,
,.,. .,
~.
?.
%,~”*acteristic Symbol M= Unit
Total Pac~@&b~pation(l )PD 150 mW
TA =~5G&,~~
~.>!,...,r”~’h::.
The@al~@istance Junction to Amtient
*,. .RgJA 833 ‘cm
:l~hc#&~and Storage Temperature
...:.J~t},*... TJI Tstg –55 to ‘c
.*:,$::,,
~,*, +150
i\:T$...
‘:~~’:bevice mounted on FR4 glass epo~ printed circuit board using the minimum
‘“ recommended footprint.
DEVICE MARKING
MBT3904DW1TI =MA MBT3946DW1T1 =46
MBT3906DWITI =A2
Thermal Clad is atrademark of the Bergquist Company.
MBT3904DW1 T1
(3) (2) (1)
h+
Q1 Q2
(4) (5) (6)
MBT3906DW1T1
(3) (2) (1)
h+
Q1 Q2
(4) (5) (6)
MBT3946DW1T1*
(3) (2) (1)
h+
Q1 Q2
(4) (5) (6)
*Q1 same as MBT3906DW1TI
Q2 same as MBT3904DWI TI
@Motorola, Inc. 1996 @MOTOROLA
,,. :,
,’
‘MBT3904DWITI MBT3906DW1T1 MBT3946DWIT1
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted)
Characteristic Symbol Min Ma Unit
:OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(2) V(BR)CEO lo Vdc
(1c=1.0 mAdc, IB =O) MBT3904DW1TI (NPN)
(lc =-1.0 mAdc, IB =O) MBT3906DW1T1 (PNP) 40
Collector-Base Breakdown Voltage V(BR)CBO 60 Vdc
,, (1C=10 @de, [E =O) MBT3904DW1TI (NPN) *,\
(IC =-10 ~Adc, iE =O) MBT3906DW1T1 (PNP) 40 *’X,l,
$J,$<,.,,.,’~,’$:.
‘!,.,~1+ts.,
w
Emitter-Base Breakdown Voltage V(BR)EBO ~. ~“-’:;*&
(IE =10 pAdc, [c =O) MBT3904DW1T1 (NPN) _“?/i*;$ike..ii.
(lE=-lo@dC,lC=o) MBT3906DW1T1 (PNP) –5.0 .@,.+i:1~
~ey$>$.
,,,,..~u ,*
Base Cutoff Current IBL ,,t.,.~~!
,1.*$~Jr
‘,~i+.,,,.,, nAdc
(VCE,= 30 Vdc, VEB =3.0 Vdc) MBT3904DW1T1 (NPN) ..:i
**>’
,,,;pk$”
(VCE =-30 Vdc, VEB =-3.0 Vdc) MBT3906DWIT1 (PNP) -::’.
~:,~..+‘Y-50
.,: *F.
*.$,
Collector Cutoff Current ~~i{,
!CEX .$:~.i:>}a.,...i}
,:’”:ti nAdc
(VCE =30 Vdc, VEB =3.0 Vdc) MBT3904DW1TI (NPN) ~,1~’~”?t$<’*~
,,Jt.-g\~*:$$N 50
(VCE =-30 Vdc, VEB =+.0 Vdc) MBT3906DWIT1 (PNP) ‘.:lii,,.$,,$*::
.$’~~~:.. –50
.,...4
DC Current Gain J,
‘f&$QgE
(1c=0.1 mAdc, VCE =1.0 Vdc) MBT3904DWI T1 (NPN) ~f’~’:<>$~s$ 40
(1c=1.0 mAdc, VCE =1.0 Vdc) 70
,,+\’,‘:;*>,\
:~\\\\:,.’, ...
‘:~!,$lL.,,,,,\
(Ic =’-10 mAdc, [B =-1.0 rnAdc) \.~~.
*. *::;.,..&,
.$+~>.~ MBT3906DW1T1 (PNP)
(lc =-50 mAdc, IB =-5.0 mAdc) .,,$+$,,,,~
. .:.,
Base–Emitter Saturation Voltagee,, ~:+,,~ ~
(Ic =10 mAdc, IB =1.0 mAdc~’’*~~ “’’” MBT3904DWIT1 (NPN)
(IC =50 mAdc, IB =5.0 rn,@~:JX#
!.1’ ..’
‘,.<:,.i ,.,
(1c=-10 mAdc, lB~Ml .O’wdc) MBT3906DW1T1 (PNP)
(Ic =-50 mAdc, ~$$y~9Q mAdc)
.’
SMALL-SIG*% characteristics
100 300
60
30
60
60
100 300
60
30
VCE(sat) 0.2
0.3
4.25
4.4
VBE(sat) 0.65 0.85
0.95
4.65 4.85
+.95
,,,.,(
fT
MBT3904DWIT1 (NPN)
MBT3906DW1T1 (PNP)
Qti& Capacitance Cobo
‘~~~CB =5.0 Vdc, IE =O,f=1.0 MHz) MBT3904DW1TI (NPN)
(VCB =-5.0 Vdc, IE =O,f=1,0 MHz) MBT3906DW1T1 (PNP)
+
300
250
I4.0
4.5
Vdc
Vdc
MHz
pF
Input Capacitance ~bo pF
(VEB =0.5 Vdc, Ic =O,f=1.0 MHz) MBT3904DW1T1 (NPN) 8.0
(VEB =-.5 Vdc, IC =O,f=1.0 MHz) MBT3906DW1T1 (PNP) 10.0
2, Pulse Test Pulse Width< 300p; Duty Cycle< 2.070.
2Motorola Small–Signal Transistors, FETs and Diodes Device Data
.,:.
MBT3904DWITI MBT3906DW1TI MBT3946DWIT1
ELECTRICAL CHARACTERISTICS (TA =25°C unless othewise noted) (Continued)
Characteristic Symbol Min Max Unit
Input Impedance hie kQ
(VCE =10 Vdc, Ic =1.0 mAdc, f=1.0 kHz) MBT3904DW1 TI (NPN) 1,0 10
(VCE =-10 Vdc, Ic =-1.0 mAdc, f=1,0 kHz) MBT3906DW1 T1 (PNP) 2,0 12
Voltage Feedback Ratio hre x 1o–4
(VCE =10 Vdc, IC =1.0 mAdc, f=1.0 kHz) MBT3904DW1T1 (NPN) 0.5 8.0
(VCE =-10 Vdc, Ic =-1.0 mAdc, f=1.0 kHz) MBT3906DWIT1 (PNP) 0.1 10 ~:;:.,
~?.$
Small–Signal Current Gain ~iy!..~$*.’,.<<.t.t,!
hfe
(VCE =10 Vdc, Ic =1.0 mAdc, f=1.0 kHz) MBT3904DW1T1 (NPN) /,$r”J’,,.>
:,
100
(VCE =-10 Vdc, Ic =-1.0 mAdc, f=1.0 kHz) MBT3906DW1T1 (PNP) 100 ,,,:&j%:;;
Output Admittance ......
hoe ., ,,>...:/.,
,\$,.s?
(VCE =10 Vdc, IC =1.0 mAdc, f=1.0 kHz) ,,: pmhos
.:.~..
MBT3904DW1T1 (NPN) 1.w$:~$,,$.
“>’40
(VCE =-10 Vdc, Ic =-1.0 mAdc, f=1.0 kHz) MBT3906DW1T1 (PNP) ,;~k$’”! 60
Noise Figure NF ~
~~ \.+\~,+.<\,.?..’
?.. dB
(VCE =5.0 Vdc, IC =100 @de, RS =1.0 kQ, f=1.0 kHz) MBT3904DWITI (NPN) 5.0
(VCE =-5,0 Vdc, ic =-100 pAdc, Rs =1.0 k~, f=1.0 kHz) MBT3906DW1T1 (PNP) >/,s$” 4.0
SWITCHING CHARACTERISTICS ,,~\\Tt:!,*.
.,,.:.$‘.~v.,,.}+
Delay Time s\*..,.,‘i!..-~’~’
(Vcc =3.0 Vdc, VBE =-0.5 Vdc) MBT3904DW1T1 (NPN] ‘$~,;:fi’ 35
(Vcc =-3.0 Vdc, VBE =0.5 Vdc) MBT3906DWIT1 (P~$$, ,,*:, 35
Rise Time (1c =10 mAdc, IB1 =1.0 mAdc) MBT3904DWlT~jw+ tr ns
35
(1c =-10 mAdc, IB1 =-1.0 mAdc) MBT3906DwJ,T~~A@) 35
Storage Tme (Vcc =3,0 Vdc, [c =10 mAdc) MBT390$~W+$~ (NPN) ts 200
(Vcc =-3.0 Vdc, Ic =-10 mAdc) MBT3%,WIT1 (PNP) 225
,*
Fall Tme (IB1 =IB2 =1.0 mAdc) M~~39~DWlTl (NPN) tf ns
50
(IB1 =162= -1,0 mAdc) ,,,,h;pDWITl (PNP) 75
‘<’L ‘“”
Motorola Small–Signal Transistors, FETs and Diodes Device Data 3
‘~MBT3904DWlTl MBT3906DW111 MBT3946DWITI
,,
,,
MBT3904DW1T1 (NPN)
t3v
DUW’CYCLE =2%
!
lo<tj <500@+ tl l~+109v
300 ns+k“
m– “09 v275 DUTY CYCLE =2% n
t3vI275
,,. ——
0.1 0.2 0.3 Q.~:~&l.O 2.0 3.0 5.071010 203040
.,’s. .. ... ~t>:\
Ts:r5000 I I I I I II I I {III II
\,.;’,,. 3000 “cc =40 v
l~!B =10
fin”” L
~t MBT3904DW1T1 (NPN) ~
70 IIII I I I I II I k
50 III I I I I1II tL
1.0 2.0 3.0 5.07.0 10 20 30 50 70 100 200
I ! 111
I
1 1$ 1 i>1 i
IIxl I1111 IJ
4Motorola Small–Signal Transistors, FETs and Diodes Device Data
MBT3904DW1TI MBT3906DW1T1 MBT3946DW1TI
MBT3904DWIT1 (NPN)
5001<< 1III111111 II
J
500
300
200
100
70
50
30
20
10
70 II I I I I I
En !~
7~ !,
I I !I I !I“d”voi=o~
3.0 5.07.010 20 30 50 70100 200
-1.0 2,0 :
Ic, COLLECTOR CURRENT (mA)
Figure 5. Turn-On Time
500 III1[11 1I1 11 1
r~ =t~- l/8 tf-
[~1B=20& l~lB=lo\ IB1 =1B2
300
200
I
IIIIItI!1!! II
IIT
Ii~lB=10’
-.
10
7
E
10
7
5
I I 11
I I III I 1111 I
1.0 2,0 3,0 5.07.010 20 30 ,f#b.?&iOo 200 ‘1.0 20 sn 5n7nin 9n Qn Fn 7n inn 9nn
14
12
10
8
L-
2
lc=100~A MBT3904DW1TI (NPN)
oIll II I I 1111
0.1 0.2 0,4 1.0 2,0 4.0 10 20 40 100
,I1 1 I I 1 1 11 1
nm
-0.1 0.2 0,4 1.0 2.0 4.0 10 20 40 100
f, FREQUENCY (kHz) Rs, SOURCE RESISTANCE (k OHMS)
Figure 9. Noise Figure Figure 10. Noise Figure
Motorola Small-Signal Transistors, FETs and Diodes Device Data 5
‘, MBT3904DW1T1 M”BT3906DW1T1 MBT3946DW1T1
,, MBT3904DWIT1 (NPN)
hPARAMETERS
(VCE =10 Vdc, f =1.0 kHz, TA =’25°C)
Ic, COLLECTOR CURRENT (mA)
Figure 11. Current Gain
I ! I 1 1 1 1 1 IMBT3904DW1TI (NPN)
I I
I t , , I I I 1111
.II I I I I IIIll I I
lc, COLLECTOR C@#E,@fi~) Ic, COLLECTOR CURRENT (mA)
Figure 14. Voltage Feedback Ratio
,, 6’ Motorola Small–Signal Transistors, FETs and Diodes Device Data
MBT3904DWIT1 MBT3906DW1T1 MBT3946DW1
MBT3904DW1T1 (NPN)
TVPICAL STATIC CHARACTERISTICS
2!0
1.0
0.7
0.5
0.3
0.2
0.1 0
lc, COLLECTORCURRENT(mA) .:1,.,h$.*.-
,~j,>.,,.~$,!.,~,.Y,$””
Figure 15. DC Current Gain ‘~(::k~’
:p”v::.
,,, , ,.., .,
T1
.,., ....>.,.-,,,.
1.0
0.5
-1.5
–9 n
I I I1
MBT3904DW1T1(NPN) I
I I +25°CTOt125°C
-55°C TOt25°C
-55°CTOt25°C
I I I
t25°C TOt125°C
Y
-.” 020 40 60 80 100 120 140 160 180 200
Ic, COLLECTORCURRENT(mA) Ic, COLLECTORCURRENT(mA)
Figure 17. “ON” Voltages Figure 18. Temperature Coefficients
Motorola Small–Signal Transistors, FETs and Diodes Device Data 7
:. ,.
MBT3904DW1T1 MBT3906DW1T1 MBT3946DWIT1
MBT3906DW1T1 (PNP)
~’::,:k,.<>
Figure 19. Delay and Rise Time ,$,,,::8,\.
Figure 20. Storage ~~’~fime
Equivalent Test Circuit Equivalent T@t C*~uit
VT CHARACTERISTIS ‘“*’
, , I I I
,1
uIII I I I
5~nl ..$;?
II I I ! ! I!ll IIN II II I I .,. 1111
5500 1 1 I I I I 41A 1 1 1 1 1 1 11 II
1I I I1! 1111 I I I ..4 lull II70
‘1,01 ....
,,, , . ,,‘.
0.1 0.2 0,3 0.50,71.0 .2.0 3.fJ\ 5.$7:010 20 3040 50 1.0 2.0 3.0 5.07,0 10 20 30 50 70’100 200
REVERSE Bf~’’~t~’) Ic,COLLECTOR CURRENT (mA)
?,-
;b!:..‘]?S>r.,-*..
Figure ~J~p~cltance
,.O
I I I I I II I
Figure 22. Charge Data
500 IIIll I I I I11111 I
MBT3906DWIT1 (PNP) __vcc=40v _
IIB1 =1B2
I I I I Ill I11 1
300
200
100
70
1/ t1II I I I II I
50
30
20
10
7
51.0 2.0 3,0 5.07.0 10 20 30 50 70100 200
1 1 1II1 1 )11 ~@v~- “’J z
II I I I I1111
-1,0 2.0 3!0 5.07.010 20 30 50 70100 200
Ic,COLLECTOR CURRENT (mA) Ic, COLLECTOR CURRENT (mA)
Figure 23. Turn-On Time Figure 24. Fall Time
,,
,8 Motorola Small-Signal Transistors, FETs and Diodes Device Data
,,
MBT3904DW1TI MBT3906DWIT1 MBT3946DW1T1
MBT3906DW1TI (PNP)
TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
(VCE =-5.0 Vdc, TA =25”C, Bandwidth =1.0 Hz)
12 I I I I II1111111/ I I AI111111
f=l.OkHz -Ic=l.om
10 I I I I I[It
II I 1111111 Ic
I
8
6
4
2
-0.1 0.2 0.4 1.0 2.0 4.0 10 20 40 100
f, FREQUENCY (kHz)
Figure 25. Figure 26.
100
70
50
30
20
10
7II I I I I II I I I I I 1111
KI I II
“0.1 0.2 0.3 0.5 0.7 1.0 2,0 3.0 5.0 7.0 10
Ic,COLLECTOR CURRENT (mA)
,,J lc~*~ECTOR CURRENT (mA)
Figure 28. Output Admittance
1I1I1111
11
%III I I I I II
I
1> I I I I I II
~1.0 I11II1 1 1 I1Iml 1I1 1
, , I , $I , I , I , rWI , , I
zn? I I IN
U.t
~~ 0.5
0.3
0.2
..—
0.1 0.2 0.3 0.5 0.7 1.0 2,0 3.0 5.0 7.0 10 c= ‘“”0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10
Ic, COLLECTOR CURRENT (mA)
Figure 30. Voltage Feedback Ratio
Ic, COLLECTOR CURRENT (mA)
Figure 29. Input Impedance
Motorola Small–Signal Transistors, FETs and Diodes Device Data 9
MBT3904DWIT1 MBT3906DW1T1 MBT3946DW1T1
MBT3906DW1T1 (PNP)
TYPICAL STATIC CHARACTERISTICS
1.0 2.0 5,0 10 20 50 100 200
Ic,
COLLECTORCURRENT (mA)
5
m -2,0
-55°CTO t25°C .
- \
-MBT3906DWIT1 (PNP) I I
.,
–55°C TO t25°C
-8VBFORVBE(~at)
/II I
o20 40 60 80 100 120 140 160 180 200
Ic,COLLECTOR CURRENT (mA)
Hgure 33. “ON” Voltages Hgure 34. Temperature Coefficients
10 Motorola Small-Signal Transistors, FETs and Diodes Device Data
INFORMATION
MBT3904DW1TI MBT3906DW1TI MBT3946DW1T1
FOR USING THE SOT-363 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Sutiace mount board layout is acritical portion of the total interface between the board and the package. With the
design. The footprint for the semiconductor packages must
correct pad geometry, the packages will self align when
be the correct size to insure proper solder connection subjected to asolder reflow process.
The
pad size. This can vary from the minimum pad size f&#$::,’”s’
soldering to apad size given for maximum power di~ipatin.
Power dissipation for asurface mount device is,$~~{rnined
by TJ(max), the maximum rated junction tem~(~~reof the
die, R8JA, the thermal resistance from the,@,~~.junction to
‘\~\<”
ambient, and the operating tempera&$~$-j~#. Using the
values provided on the data sheet for@~@7-363 package,
PD can be calculated as follows: <i,“k~~ ~
\.t,~\:\‘*?::.%,,>;?J
,1.:: “’.]>
The values for ~he’$~.@tion are found in the maximum
ratings table on ~,data sheet. Substituting these values into
the equationJo~~#tibient temperature TA of 25°C, one can
,,,>i~$
calculate,~~~:,,~~er dissipation of the device which in this
case isit~+~~i watts.
*,:,?*U.
,,*.. ?i~,,,
‘“*S..,
~j~ik,,h. ,1.
:~<..:.y,~i..
{The833°CM for the SOT–363 package assumes the use
ofthe recommended footprint on aglass epoxy printed circuit
board to achieve apower dissipation of 150 milliwatts. There
are other alternatives to achieving higher power dissipation
from the SOT–363 package. Another alternative would be to
use aceramic substrate or an aluminum core board such as
Thermal Clad’”. Using aboard material such as Thermal
Clad, an aluminum core board, the power dissipation can be
doubled using the same footprint.
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to ahigh temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and soldering
should be 10O°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference shall be amaximum of 10°C.
The soldering temperature and time shall not exceed
260°C for more than 10 seconds.
When shiting from preheating to soldering, the maximum
temperature gradient shall be 5°C or less.
After soldering has been completed, the device should be
allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling.
Soldering adevice without preheating can cause excessive
thermal sh;ck and stress which can result in damage to the
device.
Motorola Small–Signal Transistors, FETs and Diodes Device Data 11
.:.’ .!
,’
MBT3g04DtilTl MBT3906DWIT1 MBT3946DWIT1
PAC~GE DIMENSIONS
s
I
,-, -”.
1. DIMENSIONING ANO ~LERANCING PER ANSI
Y14.5M, 1962,
2, CO~ROLLING OIMENSION INCH.
m
appticati~s. ~1 Operatingparameters, includng Typicals” mustbe vatidated for each customer application by customer’s technical experts. Motorola does
not _dy;@ Iicenaeunderits patent rightsnor the rightsof others. Motorola products are not designed, intended, or authorizedfor use as components in
sy_:*nded for surgical implant intothe body, or other apphcationsintended to support orsustain life, or for any other application in which the failure of
:~,lwrola product could create asituation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
$~~dedor unauthorizedappticafion,Buyershallindemnify and hold Motorola and its officers,employees, subsidiaries, affiliates,and diatributora hamless
~nat all claims, costs, damages, and,expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of parsonal injury or death
associatedwith such unintendedor unauthorizeduse,even ifsuchclaim alleges that Motorola was negligent regarding the design ormanufacture of the part,
Motorolaand @are registeredtrademarksof Motorola, Inc. Motorola, Inc. ie an Equal Oppotiunity/Affirmative Action Employer.
Howto reach us
USA/EUROPE MotorolaLiteratureDistrfbtio~ JAPAN:Mppon MotorolaLtd; TafsumWPNLDC, ToshkatsuOkuh,
P.O.Box20913 Phoenix,Arizona65~. 14WI-247 6FSeibAutsu@entar,%142 TatsumiKottiu, To@oIW, Japan. 0~21+15
MF~: RMFAXO@email.sps.mot.com-TOUCHTONE (602)2- HONGKONG. MotorolaSemicond@om H.K. Ltd; 6BTsi Pinglndutid Pak,
INTERNEE http//Design-N~.com’ 51Tng Kok Road,Tti Po,N.T, Hong King. 652–26629298
@MOTOROLA ~
,, llllllllllllllllllllillllllllllllllllllllllllllllllllllltifiitiii
,,’,